Undergraduate Texts in Mathematics Ser.: Ideals, Varieties, and Algorithms : An Introduction to Computational Algebraic Geometry and Commutative Algebra by Donal O'Shea, David A. Cox and John Little (2015, Hardcover)

Late Knight Books (87)
100% positive feedback
Price:
US $54.49
(inclusive of GST)
ApproximatelyS$ 70.00
+ $24.23 shipping
Estimated delivery Tue, 1 Jul - Thu, 10 Jul
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Brand New

About this product

Product Identifiers

PublisherSpringer International Publishing A&G
ISBN-103319167200
ISBN-139783319167206
eBay Product ID (ePID)240528332

Product Key Features

Number of PagesXvi, 646 Pages
Publication NameIdeals, Varieties, and Algorithms : An Introduction to Computational Algebraic Geometry and Commutative Algebra
LanguageEnglish
Publication Year2015
SubjectAlgebra / Abstract, Algebra / General, Logic, Geometry / Algebraic
TypeTextbook
Subject AreaMathematics
AuthorDonal O'shea, David A. Cox, John Little
SeriesUndergraduate Texts in Mathematics Ser.
FormatHardcover

Dimensions

Item Weight45.6 Oz
Item Length9.3 in
Item Width6.1 in

Additional Product Features

Edition Number4
Intended AudienceScholarly & Professional
Reviews"In each of the new editions the authors' were interested to incorporate new developments, simplifications of arguments as well as further applications. Thanks to the authors' this is also the case in the present fourth edition. ... Thanks to the continuously updating the textbook will remain an excellent source for the computational Commutative Algebra for students as well as for researchers interested in learning the subject." (Peter Schenzel, zbMATH 1335.13001, 2016)
Dewey Edition20
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal516.3/5
Table Of ContentPreface.- Notation for Sets and Functions.- 1. Geometry, Algebra, and Algorithms.- 2. Groebner Bases.- 3. Elimination Theory.- 4.The Algebra-Geometry Dictionary.- 5. Polynomial and Rational Functions on a Variety.- 6. Robotics and Automatic Geometric Theorem Proving.- 7. Invariant Theory of Finite Groups.- 8. Projective Algebraic Geometry.- 9. The Dimension of a Variety.- 10. Additional Groebner Basis Algorithms.- Appendix A. Some Concepts from Algebra.- Appendix B. Pseudocode.- Appendix C. Computer Algebra Systems.- Appendix D. Independent Projects.- References.- Index.
SynopsisThis text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry--the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz--this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gr bner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple(TM), Mathematica(R) and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used. Readers who are teaching from Ideals, Varieties, and Algorithms , or are studying the book on their own, may obtain a copy of the solutions manual by sending an email to jlittle@holycross.edu. From the reviews of previous editions: "...The book gives an introduction to Buchberger's algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry." --Peter Schenzel, zbMATH , 2007 "I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." --The American Mathematical Monthly, This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry--the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz--this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate levelcourses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple(TM), Mathematica(R) and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used. Readers who are teaching from Ideals, Varieties, and Algorithms , or are studying the book on their own, may obtain a copy of the solutions manual by sending an email to jlittle@holycross.edu. From the reviews of previous editions: "...The book gives an introduction to Buchberger's algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry." --Peter Schenzel, zbMATH , 2007 "I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." --The American Mathematical Monthly, This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry--the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz--this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate levelcourses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple(tm), Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used. Readers who are teaching from Ideals, Varieties, and Algorithms , or are studying the book on their own, may obtain a copy of the solutions manual by sending an email to jlittle@holycross.edu. From the reviews of previous editions: "...The book gives an introduction to Buchberger's algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry." --Peter Schenzel, zbMATH , 2007 "I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." --The American Mathematical Monthly
LC Classification NumberQA564-609

All listings for this product

Buy It Now
Any Condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review