Springer Series in Statistics Ser.: Multiscale Modeling : A Bayesian Perspective by Marco A. R. Ferreira and Herbert K. H. Lee (2007, Hardcover)

toys-n-books (1323)
98.8% positive feedback
Price:
US $42.51
(inclusive of GST)
ApproximatelyS$ 55.89
+ $29.75 shipping
Estimated delivery Fri, 16 May - Tue, 27 May
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Brand New

About this product

Product Identifiers

PublisherSpringer New York
ISBN-100387708979
ISBN-139780387708973
eBay Product ID (ePID)59107776

Product Key Features

Number of PagesXii, 245 Pages
Publication NameMultiscale Modeling : a Bayesian Perspective
LanguageEnglish
SubjectComputer Simulation, Probability & Statistics / General, Econometrics, Probability & Statistics / Time Series, Probability & Statistics / Bayesian Analysis
Publication Year2007
TypeTextbook
AuthorMarco A. R. Ferreira, Herbert K. H. Lee
Subject AreaMathematics, Computers, Business & Economics
SeriesSpringer Series in Statistics Ser.
FormatHardcover

Dimensions

Item Height0.3 in
Item Weight19.7 Oz
Item Length9.3 in
Item Width6.1 in

Additional Product Features

Intended AudienceScholarly & Professional
Dewey Edition22
ReviewsFrom the reviews: "Readership: Students and practitioners of Multiscale Modeling and Analysis by Bayesian methods.... This is a wonderfully written review of what is known about multiscale modelling and associated Bayesian inference.... The models are very clearly described and discussed with a lot of insight. The computational details are also discussed well. The book is very well written... ." (Jayanta K. Ghosh, International Statistical Review, Vol. 76 (1), 2008) "In general, the book discusses various statistical tools, which can be used to link the information at different scales and assess the associated uncertainties. Approaches to speed up the computations are also presented. The basic computer codes for many of the methods discussed in the book are made available through the website of one of the authors. This is a very good introductory book for nonexperts as well as for experts working in this field." (Yalchin Efendiev, Journal of the American Statistical Association, March 2009, Vol. 104, No. 485) "A multitude of natural processes occur in multiple scales giving rise to complicated phenomenon often modeled by processes, algorithms, and data structured by scale. However, a 'real' book that summarizes these for a wider audience, particularly geostatisticians, has been lacking. I personally thank Professors Ferreira and Lee for filling this void with this commendable book, a nicely organized exploration of multiscale methods developed using a Bayesian paradigm. ... Multiscale Modeling: A Bayesian Perspective is not really a textbook... . It is more like an advanced-level reference book for graduate students and geostatistical researchers interested in learning about the advances in this field. For any PhD-level graduate statistics course in advanced multiscale models, this book...is automatically the book of choice. The detailed theoretical exposition of the methods, motivating examples forillustration, easy-to-understand R programs, and other features will enable any instructor to introduce the topic in the classroom setting. Several Chapters can provide sufficient insight to choose a PhD dissertation topic. The extensive bibliography at the end of the book will complement the learning curve. The book is a seminal work in this direction, the first of its kind, and I highly recommend it." (Technometrics, May 2010, Vol. 52, No. 2), From the reviews: "Readership: Students and practitioners of Multiscale Modeling and Analysis by Bayesian methods.... This is a wonderfully written review of what is known about multiscale modelling and associated Bayesian inference.... The models are very clearly described and discussed with a lot of insight. The computational details are also discussed well. The book is very well written... ." (Jayanta K. Ghosh, International Statistical Review, Vol. 76 (1), 2008) "In general, the book discusses various statistical tools, which can be used to link the information at different scales and assess the associated uncertainties. Approaches to speed up the computations are also presented. The basic computer codes for many of the methods discussed in the book are made available through the website of one of the authors. This is a very good introductory book for nonexperts as well as for experts working in this field." (Yalchin Efendiev, Journal of the American Statistical Association, March 2009, Vol. 104, No. 485) "A multitude of natural processes occur in multiple scales giving rise to complicated phenomenon often modeled by processes, algorithms, and data structured by scale. However, a 'real' book that summarizes these for a wider audience, particularly geostatisticians, has been lacking. I personally thank Professors Ferreira and Lee for filling this void with this commendable book, a nicely organized exploration of multiscale methods developed using a Bayesian paradigm. ... Multiscale Modeling: A Bayesian Perspective is not really a textbook... . It is more like an advanced-level reference book for graduate students and geostatistical researchers interested in learning about the advances in this field. For any PhD-level graduate statistics course in advanced multiscale models, this book...is automatically the book of choice. The detailed theoretical exposition of the methods, motivating examples for illustration, easy-to-understand R programs, and other features will enable any instructor to introduce the topic in the classroom setting. Several Chapters can provide sufficient insight to choose a PhD dissertation topic. The extensive bibliography at the end of the book will complement the learning curve. The book is a seminal work in this direction, the first of its kind, and I highly recommend it." (Technometrics, May 2010, Vol. 52, No. 2), From the reviews:"Readership: Students and practitioners of Multiscale Modeling and Analysis by Bayesian methods.… This is a wonderfully written review of what is known about multiscale modelling and associated Bayesian inference.… The models are very clearly described and discussed with a lot of insight. The computational details are also discussed well. The book is very well written… ." (Jayanta K. Ghosh, International Statistical Review, Vol. 76 (1), 2008)"In general, the book discusses various statistical tools, which can be used to link the information at different scales and assess the associated uncertainties. Approaches to speed up the computations are also presented. The basic computer codes for many of the methods discussed in the book are made available through the website of one of the authors. This is a very good introductory book for nonexperts as well as for experts working in this field." (Yalchin Efendiev, Journal of the American Statistical Association, March 2009, Vol. 104, No. 485)"A multitude of natural processes occur in multiple scales giving rise to complicated phenomenon often modeled by processes, algorithms, and data structured by scale. However, a 'real' book that summarizes these for a wider audience, particularly geostatisticians, has been lacking. I personally thank Professors Ferreira and Lee for filling this void with this commendable book, a nicely organized exploration of multiscale methods developed using a Bayesian paradigm. … Multiscale Modeling: A Bayesian Perspective is not really a textbook… . It is more like an advanced-level reference book for graduate students and geostatistical researchers interested in learning about the advances in this field. For any PhD-level graduate statistics course in advanced multiscale models, this book…is automatically the book of choice. The detailed theoretical exposition of the methods, motivating examples for illustration, easy-to-understand R programs, and other features will enable any instructor to introduce the topic in the classroom setting. Several Chapters can provide sufficient insight to choose a PhD dissertation topic. The extensive bibliography at the end of the book will complement the learning curve. The book is a seminal work in this direction, the first of its kind, and I highly recommend it." (Technometrics, May 2010, Vol. 52, No. 2)
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal519.542
Table Of ContentModels for Spatial Data.- Illustrative Example.- Convolutions and Wavelets.- Convolution Methods.- Wavelet Methods.- Explicit Multiscale Models.- Overview of Explicit Multiscale Models.- Gaussian Multiscale Models on Trees.- Hidden Markov Models on Trees.- Mass-Balanced Multiscale Models on Trees.- Multiscale Random Fields.- Multiscale Time Series.- Change of Support Models.- Implicit Multiscale Models.- Implicit Computationally Linked Model Overview.- Metropolis-Coupled Methods.- Genetic Algorithms.- Case Studies.- Soil Permeability Estimation.- Single Photon Emission Computed Tomography Example.- Conclusions.
SynopsisA wide variety of processes occur on multiple scales, either naturally or as a consequence of measurement. This book contains methodology for the analysis of data that arise from such multiscale processes. The book brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. The Bayesian approach also facilitates the use of knowledge from prior experience or data, and these methods can handle different amounts of prior knowledge at different scales, as often occurs in practice. The book is aimed at statisticians, applied mathematicians, and engineers working on problems dealing with multiscale processes in time and/or space, such as in engineering, finance, and environmetrics. The book will also be of interest to those working on multiscale computation research. The main prerequisites are knowledge of Bayesian statistics and basic Markov chain Monte Carlo methods. A number of real-world examples are thoroughly analyzed in order to demonstrate the methods and to assist the readers in applying these methods to their own work. To further assist readers, the authors are making source code (for R) available for many of the basic methods discussed herein., This book presents methodology for analyzing data that cocur on multiple scales (for example, daily and monthly data, or data at zip code and state levels). This is the first such book to focus on the Bayesian approach, which allows straightforward incorporation of prior knowledge, as well as estimates of uncertainty. Two worked case studies provide detailed examples of these methods in practice., This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice., A wide variety of processes occur on multiple scales, either naturally or as a consequence of measurement. This book contains methodology for the analysis of data that arise from such multiscale processes. The book brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. The Bayesian approach also facilitates the use of knowledge from prior experience or data, and these methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.
LC Classification NumberQA276-280

All listings for this product

Buy It Now
Any Condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review