Product Information
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.Product Identifiers
PublisherSpringer International Publishing A&G
ISBN-139783319218571
eBay Product ID (ePID)223162404
Product Key Features
Number of Pages147 Pages
LanguageEnglish
Publication NameFeature Selection for High-Dimensional Data
Publication Year2015
SubjectComputer Science
TypeTextbook
AuthorVeronica Bolon-Canedo, Amparo Alonso-Betanzos, Noelia Sanchez-Marono
SeriesArtificial Intelligence: Foundations, Theory, and Algorithms
Dimensions
Item Height235 mm
Item Weight3731 g
Additional Product Features
Country/Region of ManufactureSwitzerland
Title_AuthorAmparo Alonso-Betanzos, Veronica Bolon-Canedo, Noelia Sanchez-Marono