Contemporary Physicists Ser.: Collected Papers : Constructive Quantum Field Theory by Arthur Jaffe and J. Glimm (1985, Hardcover)

Lavendier Books (14596)
100% positive feedback
Price:
US $43.60
(inclusive of GST)
ApproximatelyS$ 56.72
+ $29.36 shipping
Estimated delivery Tue, 27 May - Thu, 5 Jun
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Very Good

About this product

Product Identifiers

PublisherBirkhäuser Boston
ISBN-100817632727
ISBN-139780817632724
eBay Product ID (ePID)2188788

Product Key Features

Number of PagesX, 534 Pages
LanguageEnglish
Publication NameCollected Papers : Constructive Quantum Field Theory
Publication Year1985
SubjectPhysics / Quantum Theory, Algebra / Abstract, Mechanics / General
TypeTextbook
AuthorArthur Jaffe, J. Glimm
Subject AreaMathematics, Science
SeriesContemporary Physicists Ser.
FormatHardcover

Dimensions

Item Weight97.4 Oz
Item Length10 in
Item Width7 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN86-102757
Dewey Edition19
Number of Volumes1 vol.
Volume NumberVol. 2
IllustratedYes
Dewey Decimal530.1/43
Table Of ContentCollected Papers - Volume 2.- I Construction of P(?)2.- A ? (?4)2 quantum field theory without cutoffs: part I..- The ? (?4)2, quantum field theory without cutoffs: part II. The field operators and the approximate vacuum.- The ? (?4)2 quantum field theory without cutoffs: part III. The physical vacuum.- The Wightman axioms and particle structure in the P(?)2 quantum field model.- II Phase Cell Localization and ?34 Stability.- Positivity and self adjointness of the P(?)2 Hamiltonian.- The ? (?4)2 quantum field theory without cutoffs: part IV. Perturbations of the Hamiltonian.- Positivity of the ?34 Hamiltonian.- III Phase Transitions Exist.- Phase transitions for ?24 quantum fields.- A convergent expansion about mean field theory: part I. The expansion.- A convergent expansion about mean field theory: part II. Convergence of the expansion.- IV Phase Transitions and Critical Behavior.- Critical point dominance in quantum field models.- ?24 quantum field model in the single-phase regions: Differentiability of the mass and bounds on critical exponents.- Remark on the existence of ?44.- On the approach to the critical point.- Critical exponents and elementary particles.- V Particle Structure.- The entropy principle for vertex functions in quantum field models.- Three-particle structure of ?4 interactions and the scaling limit.- Two and three body equations in quantum field models.- Particles and scaling for lattice fields and Ising models.- The resummation of one particle lines.- VI Bounds on Coupling Constants.- Absolute bounds on vertices and couplings.- The coupling constant in a ?4 field theory.- VII Confinement and Instantons.- Instantons in a U(1) lattice gauge theory: A coulomb dipole gas.- Charges, vortices and confinement.- VIII ReflectionPositivity.- A note on reflection positivity.
SynopsisBibliograpby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical point dominance in quantum field models . . . . . . . . . . . . . . . . . . . . 326 lp, ' quantum fieId model in the single-phase regioni: Differentiability of the mass and bounds on critical exponents . . . . 341 Remark on the existence of lp: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 On the approach to the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Critical exponents and elementary partic1es . . . . . . . . . . . . . . . . . . . . . . . . . . 362 V Particle Structure Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The entropy principle for vertex funetions in quantum fieId models . . . . . 372 Three-partic1e structure of lp' interactions and the sealing limit . . . . . . . . . 397 Two and three body equations in quantum field models . . . . . . . . . . . . . . . 409 Partic1es and scaling for lattice fields and Ising models . . . . . . . . . . . . . . . . 437 The resununation of one particIe lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on Coupling Constants Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Absolute bounds on vertices and couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 480 The coupling constant in a lp' field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortiees and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII ReOectioD Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 vii Collected Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Infinite Renormalization of the Hamiltonian Is Necessary 9 II Quantum Field Theory Models: Parti. The ep;" Model 13 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Q space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . .
LC Classification NumberQC173.96-174.52
No ratings or reviews yet
Be the first to write a review