Advanced Calculus by Gerald Folland (2001, Trade Paperback)

TextbooksXpress (3671)
98.6% positive feedback
Price:
US $28.34
(inclusive of GST)
ApproximatelyS$ 36.69
+ $4.35 shipping
Estimated delivery Fri, 13 Jun - Fri, 11 Jul
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Brand New

About this product

Product Identifiers

PublisherPearson Education
ISBN-100130652652
ISBN-139780130652652
eBay Product ID (ePID)2143098

Product Key Features

Number of Pages480 Pages
LanguageEnglish
Publication NameAdvanced Calculus
SubjectCalculus
Publication Year2001
TypeTextbook
Subject AreaMathematics
AuthorGerald Folland
FormatTrade Paperback

Dimensions

Item Height1 in
Item Weight26.4 Oz
Item Length9 in
Item Width7 in

Additional Product Features

Intended AudienceCollege Audience
LCCN2001-055359
Dewey Edition21
IllustratedYes
Dewey Decimal515
Table Of Content1. Setting the Stage. Euclidean Spaces and Vectors. Subsets of Euclidean Space. Limits and Continuity. Sequences. Completeness. Compactness. Connectedness. Uniform Continuity. 2. Differential Calculus. Differentiability in One Variable. Differentiability in Several Variables. The Chain Rule. The Mean Value Theorem. Functional Relations and Implicit Functions: A First Look. Higher-Order Partial Derivatives. Taylor's Theorem. Critical Points. Extreme Value Problems. Vector-Valued Functions and Their Derivatives. 3. The Implicit Function Theorem and Its Applications. The Implicit Function Theorem. Curves in the Plane. Surfaces and Curves in Space. Transformations and Coordinate Systems. Functional Dependence. 4. Integral Calculus. Integration on the Line. Integration in Higher Dimensions. Multiple Integrals and Iterated Integrals. Change of Variables for Multiple Integrals. Functions Defined by Integrals. Improper Integrals. Improper Multiple Integrals. Lebesgue Measure and the Lebesgue Integral. 5. Line and Surface Integrals; Vector Analysis. Arc Length and Line Integrals. Green's Theorem. Surface Area and Surface Integrals. Vector Derivatives. The Divergence Theorem. Some Applications to Physics. Stokes's Theorem. Integrating Vector Derivatives. Higher Dimensions and Differential Forms. 6. Infinite Series. Definitions and Examples. Series with Nonnegative Terms. Absolute and Conditional Convergence. More Convergence Tests. Double Series; Products of Series. 7. Functions Defined by Series and Integrals. Sequences and Series of Functions. Integrals and Derivatives of Sequences and Series. Power Series. The Complex Exponential and Trig Functions. Functions Defined by Improper Integrals. The Gamma Function. Stirling's Formula. 8. Fourier Series. Periodic Functions and Fourier Series. Convergence of Fourier Series. Derivatives, Integrals, and Uniform Convergence. Fourier Series on Intervals. Applications to Differential Equations. The Infinite-Dimensional Geometry of Fourier Series. The Isoperimetric Inequality. APPENDICES. A. Summary of Linear Algebra. Vectors. Linear Maps and Matrices. Row Operations and Echelon Forms. Determinants. Linear Independence. Subspaces; Dimension; Rank. Invertibility. Eigenvectors and Eigenvalues. B. Some Technical Proofs. The Heine-Borel Theorem. The Implicit Function Theorem. Approximation by Riemann Sums. Double Integrals and Iterated Integrals. Change of Variables for Multiple Integrals. Improper Multiple Integrals. Green's Theorem and the Divergence Theorem. Answers to Selected Exercises. Bibliography. Index.
SynopsisThis book presents a unified view of calculus in which theory and practice reinforces each other. It is about the theory and applications of derivatives (mostly partial), integrals, (mostly multiple or improper), and infinite series (mostly of functions rather than of numbers), at a deeper level than is found in the standard calculus books. KEY TOPICS: Chapter topics cover: Setting the Stage, Differential Calculus, The Implicit Function Theorem and Its Applications, Integral Calculus, Line and Surface Integrals--Vector Analysis, Infinite Series, Functions Defined by Series and Integrals, and Fourier Series. MARKET: For individuals with a sound knowledge of the mechanics of one-variable calculus and an acquaintance with linear algebra., For undergraduate courses in Advanced Calculus and Real Analysis. This text presents a unified view of calculus in which theory and practice reinforce each other. It covers the theory and applications of derivatives (mostly partial), integrals, (mostly multiple or improper), and infinite series (mostly of functions rather than of numbers), at a deeper level than is found in the standard advanced calculus books., This book presents a unified view of calculus in which theory and practice reinforces each other. It is about the theory and applications of derivatives (mostly partial), integrals, (mostly multiple or improper), and infinite series (mostly of functions rather than of numbers), at a deeper level than is found in the standard calculus books. Chapter topics cover: Setting the Stage, Differential Calculus, The Implicit Function Theorem and Its Applications, Integral Calculus, Line and Surface Integrals--Vector Analysis, Infinite Series, Functions Defined by Series and Integrals, and Fourier Series. For individuals with a sound knowledge of the mechanics of one-variable calculus and an acquaintance with linear algebra.
LC Classification NumberQA303.2.F67 2002

All listings for this product

Buy It Now
Any Condition
New
Pre-owned
No ratings or reviews yet
Be the first to write a review