Fuzzy Semigroups by John N. Mordeson (English) Paperback Book

US $265.90
ApproximatelyS$ 342.69
Condition:
Brand New
3 available
Breathe easy. Returns accepted.
Shipping:
Free Economy Shipping.
Located in: Fairfield, Ohio, United States
Delivery:
Estimated between Fri, 7 Nov and Tue, 25 Nov to 94104
Estimated delivery dates - opens in a new window or tab include seller's handling time, origin ZIP Code, destination ZIP Code and time of acceptance and will depend on shipping service selected and receipt of cleared paymentcleared payment - opens in a new window or tab. Delivery times may vary, especially during peak periods.
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Coverage:
Read item description or contact seller for details. See all detailsSee all details on coverage
(Not eligible for eBay purchase protection programmes)
Seller assumes all responsibility for this listing.
eBay item number:365904428963

Item specifics

Condition
Brand New: A new, unread, unused book in perfect condition with no missing or damaged pages. See all condition definitionsopens in a new window or tab
ISBN-13
9783642057069
Book Title
Fuzzy Semigroups
ISBN
9783642057069
Category

About this product

Product Identifiers

Publisher
Springer Berlin / Heidelberg
ISBN-10
3642057063
ISBN-13
9783642057069
eBay Product ID (ePID)
109235611

Product Key Features

Number of Pages
IX, 319 Pages
Publication Name
Fuzzy Semigroups
Language
English
Subject
Algebra / Abstract, Engineering (General), Algebra / General, Logic, Applied
Publication Year
2010
Type
Textbook
Author
John N. Mordeson, Nobuaki Kuroki, Davender S. Malik
Subject Area
Mathematics, Technology & Engineering
Series
Studies in Fuzziness and Soft Computing Ser.
Format
Trade Paperback

Dimensions

Item Weight
18 Oz
Item Length
9.3 in
Item Width
6.1 in

Additional Product Features

Intended Audience
Scholarly & Professional
Dewey Edition
21
Series Volume Number
131
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
512/.2
Table Of Content
1 Introduction.- 1.1 Notation.- 1.2 Relations.- 1.3 Functions.- 1.4 Fuzzy Subsets.- 1.5 Semigroups.- 1.6 Codes.- 1.7 Finite-State Machines.- 1.8 Finite-State Automata.- 1.9 Languages and Grammars.- 1.10 Nondeterministic Finite-State Automata.- 1.11 Relationships Between Languages and Automata.- 2 Fuzzy Ideals.- 2.1 Introduction.- 2.2 Ideals in Semigroups.- 2.3 Fuzzy Ideals in Semigroups.- 2.4 Fuzzy Bi-ideals in Semigroups.- 2.5 Fuzzy Interior Ideals in Semigroups.- 2.6 Fuzzy Quasi-ideals in Semigroups.- 2.7 Fuzzy Generalized Bi-ideals in Semigroups.- 2.8 Fuzzy Ideals Generated by Fuzzy Subsets of Semigroups.- 3 Regular Semigroups.- 3.1 Regular Semigroups.- 3.2 Completely Regular Semigroups.- 3.3 Intra-regular Semigroups.- 3.4 Semisimple Semigroups.- 3.5 On Fuzzy Regular Subsemigroups of a Semigroup.- 3.6 Fuzzy Weakly Regular Subsemigroups.- 3.7 Fuzzy Completely Regular and Weakly Completely Regular Subsemigroups.- 3.8 Weakly Regular Semigroups.- 4 Semilattices of Groups.- 4.1 A Semilattice of Left (Right) Simple Semigroups.- 4.2 A Semilattice of Left (Right) Groups.- 4.3 A Semilattices of Groups.- 4.4 Fuzzy Normal Semigroups.- 4.5 Convexity and Green's Relations.- 4.6 The Compact Convex Set of Fuzzy Ideals.- 4.7 Fuzzy Ideals and Green's Relations.- 5 Fuzzy Congruences on Semigroups.- 5.1 Fuzzy Congruences on a Semigroup.- 5.2 Fuzzy Congruences on a Group.- 5.3 Fuzzy Factor Semigroups.- 5.4 Homomorphism Theorems.- 5.5 Idempotent-separating Fuzzy Congruences.- 5.6 Group Fuzzy Congruences.- 5.7 The Lattice of Fuzzy Congruence Relations on a Semigroup.- 5.8 Fuzzy Congruence Pairs of Inverse Semigroups.- 5.9 Fuzzy Rees Congruences on Semigroups.- 5.10 Additional Fuzzy Congruences on Semigroups.- 6 Fuzzy Congruences on T*-pure Semigroups.- 6.1 T*-pure Semigroups.- 6.2Semilattice Fuzzy Congruences.- 6.3 Group Fuzzy Congruences.- 7 Prime Fuzzy Ideals.- 7.1 Preliminaries.- 7.2 Prime Fuzzy Ideals.- 7.3 Weakly Prime Fuzzy Ideals.- 7.4 Completely Prime and Weakly Completely Prime Fuzzy Ideals.- 7.5 Relationships.- 7.6 Types of Prime Fuzzy Left Ideals.- 7.7 Prime Fuzzy Left Ideals.- 7.8 Fuzzy m-systems and Quasi-prime Fuzzy Left Ideals.- 7.9 Weakly Quasi-prime Fuzzy Left Ideals.- 7.10 Fuzzy Ideals i(f) and I(f).- 7.11 Strongly Semisimple Semigroups.- 7.12 Fuzzy Multiplication Semigroups.- 7.13 Properties of Fuzzy Multiplication Semigroups.- 7.14 Fuzzy Ideal Extensions.- 7.15 Prime Fuzzy Ideals.- 8 Fuzzy Codes on Free Monoids.- 8.1 Fuzzy Codes.- 8.2 Prefix Codes.- 8.3 Maximal Fuzzy Prefix Codes.- 8.4 Algebraic Properties of Fuzzy Prefix Codes on a Free Monoid.- 8.5 Fuzzy Prefix Codes Related to Fuzzy Factor Theorems.- 8.6 Equivalent Depictions of Fuzzy Codes.- 8.7 Fuzzy Codes and Fuzzy Submonoids.- 8.8 An Algorithm of test for Fuzzy Codes.- 8.9 Measure of a Fuzzy Code.- 8.10 Code Theory and Fuzzy Subsemigroups.- 8.11 Construction of Examples by Closure Systems.- 8.12 Examples by *-morphisms.- 9 Generalized State Machines.- 9.1 T-generalized State Machines.- 9.2 T-generalized Transformation Semigroups.- 9.3 Coverings.- 9.4 Direct Products.- 9.5 Decompositions of T-generalized Transformation Semigroups.- 9.6 On Proper Fuzzification of Finite State Machines.- 9.7 Generalized Fuzzy Finite State Machines.- 9.8 Fuzzy Relations and Fuzzy Finite State Machines.- 9.9 Completion of Fuzzy Finite State Machines.- 9.10 Generalized State Machines and Homomorphisms.- 10 Regular Fuzzy Expressions.- 10.1 Regular Fuzzy Expressions.- 10.2 Codes Over Languages.- 10.3 Regulated Codes and Fuzzy Grammars.- References.
Synopsis
Lotfi Zadeh introduced the notion of a fuzzy subset of a set in 1965. Ris seminal paper has opened up new insights and applications in a wide range of scientific fields. Azriel Rosenfeld used the notion of a fuzzy subset to put forth cornerstone papers in several areas of mathematics, among other discplines. Rosenfeld is the father of fuzzy abstract algebra. Kuroki is re­ sponsible for much of fuzzy ideal theory of semigroups. Others who worked on fuzzy semigroup theory, such as Xie, are mentioned in the bibliogra­ phy. The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. We concentrate mainly on theoretical aspects, but we do include applications. The applications are in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. An extensive account of fuzzy automata and fuzzy languages is given in [100]. Consequently, we only consider results in these areas that have not appeared in [100] and that pertain to semigroups. In Chapter 1, we review some basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages. The purpose of this chapter is to present basic results that are needed in the remainder of the book. In Chapter 2, we introduce certain fuzzy ideals of a semigroup, namely, fuzzy two-sided ideals, fuzzy bi-ideals, fuzzy interior ideals, fuzzy quasi­ ideals, and fuzzy generalized bi-ideals., Lotfi Zadeh introduced the notion of a fuzzy subset of a set in 1965. Ris seminal paper has opened up new insights and applications in a wide range of scientific fields. Azriel Rosenfeld used the notion of a fuzzy subset to put forth cornerstone papers in several areas of mathematics, among other discplines. Rosenfeld is the father of fuzzy abstract algebra. Kuroki is re- sponsible for much of fuzzy ideal theory of semigroups. Others who worked on fuzzy semigroup theory, such as Xie, are mentioned in the bibliogra- phy. The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. We concentrate mainly on theoretical aspects, but we do include applications. The applications are in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. An extensive account of fuzzy automata and fuzzy languages is given in 100]. Consequently, we only consider results in these areas that have not appeared in 100] and that pertain to semigroups. In Chapter 1, we review some basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages. The purpose of this chapter is to present basic results that are needed in the remainder of the book. In Chapter 2, we introduce certain fuzzy ideals of a semigroup, namely, fuzzy two-sided ideals, fuzzy bi-ideals, fuzzy interior ideals, fuzzy quasi- ideals, and fuzzy generalized bi-ideals.
LC Classification Number
QA174-183

Item description from the seller

About this seller

grandeagleretail

98.6% positive feedback2.8M items sold

Joined Sep 2010
Usually responds within 24 hours
Grand Eagle Retail is your online bookstore. We offer Great books, Great prices and Great service.

Detailed Seller Ratings

Average for the last 12 months
Accurate description
4.9
Reasonable shipping cost
5.0
Shipping speed
5.0
Communication
4.9

Seller feedback (1,065,457)

All ratings
Positive
Neutral
Negative