Picture 1 of 1

Gallery
Picture 1 of 1

Have one to sell?
Rational Points on Elliptic Curves by Joseph H Silverman: New
US $58.45
ApproximatelyS$ 75.05
Condition:
Brand New
A new, unread, unused book in perfect condition with no missing or damaged pages.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Shipping:
Free Standard Shipping.
Located in: Sparks, Nevada, United States
Delivery:
Estimated between Fri, 5 Sep and Thu, 11 Sep to 94104
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Coverage:
Read item description or contact seller for details. See all detailsSee all details on coverage
(Not eligible for eBay purchase protection programmes)
Seller assumes all responsibility for this listing.
eBay item number:282828827447
Item specifics
- Condition
- Brand New: A new, unread, unused book in perfect condition with no missing or damaged pages. See all condition definitionsopens in a new window or tab
- Book Title
- Rational Points on Elliptic Curves
- Publication Date
- 1992-06-24
- Pages
- 281
- ISBN
- 9780387978253
About this product
Product Identifiers
Publisher
Springer New York
ISBN-10
0387978259
ISBN-13
9780387978253
eBay Product ID (ePID)
288123
Product Key Features
Number of Pages
X, 281 Pages
Language
English
Publication Name
RATIONAL Points on Elliptic Curves
Publication Year
1992
Subject
Number Theory, Geometry / Algebraic
Type
Textbook
Subject Area
Mathematics
Series
Undergraduate Texts in Mathematics Ser.
Format
Hardcover
Dimensions
Item Height
0.3 in
Item Weight
46.6 Oz
Item Length
9.3 in
Item Width
6.1 in
Additional Product Features
Intended Audience
Scholarly & Professional
Reviews
From the reviews:"The authors' goal has been to write a textbook in a technically difficult field which is accessible to the average undergraduate mathematics major, and it seems that they have succeeded admirably..."--MATHEMATICAL REVIEWS"This is a very leisurely introduction to the theory of elliptic curves, concentrating on an algebraic and number-theoretic viewpoint. It is pitched at an undergraduate level and simplifies the work by proving the main theorems with additional hypotheses or by only proving special cases. … The examples really pull together the material and make it clear. … a great book for a first introduction to the subject of elliptic curves. … very clearly written and you will understand a lot when you are done." (Allen Stenger, The Mathematical Association of America, August, 2008), "The authors' goal has been to write a textbook in a technically difficult field which is accessible to the average undergraduate mathematics major, and it seems that they have succeeded admirably..."--MATHEMATICAL REVIEWS, From the reviews: "The authors' goal has been to write a textbook in a technically difficult field which is accessible to the average undergraduate mathematics major, and it seems that they have succeeded admirably..."--MATHEMATICAL REVIEWS "This is a very leisurely introduction to the theory of elliptic curves, concentrating on an algebraic and number-theoretic viewpoint. It is pitched at an undergraduate level and simplifies the work by proving the main theorems with additional hypotheses or by only proving special cases. ... The examples really pull together the material and make it clear. ... a great book for a first introduction to the subject of elliptic curves. ... very clearly written and you will understand a lot when you are done." (Allen Stenger, The Mathematical Association of America, August, 2008), From the reviews: "The authors' goal has been to write a textbook in a technically difficult field which is accessible to the average undergraduate mathematics major, and it seems that they have succeeded admirably..."--MATHEMATICAL REVIEWS "This is a very leisurely introduction to the theory of elliptic curves, concentrating on an algebraic and number-theoretic viewpoint. It is pitched at an undergraduate level and simplifies the work by proving the main theorems with additional hypotheses or by only proving special cases. … The examples really pull together the material and make it clear. … a great book for a first introduction to the subject of elliptic curves. … very clearly written and you will understand a lot when you are done." (Allen Stenger, The Mathematical Association of America, August, 2008)
Dewey Edition
22
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
516.352
Table Of Content
I Geometry and Arithmetic.- II Points of Finite Order.- III The Group of Rational Points.- IV Cubic Curves over Finite Fields.- V Integer Points on Cubic Curves.- VI Complex Multiplication.- Appendix A Projective Geometry.- 1. Homogeneous Coordinates and the Projective Plane.- 2. Curves in the Projective Plane.- 3. Intersections of Projective Curves.- 4. Intersection Multiplicities and a Proof of Bezout's Theorem.- Exercises.- List of Notation.
Synopsis
In 1961 the second author deliv1lred a series of lectures at Haverford Col- lege on the subject of "Rational Points on Cubic Curves. " These lectures, intended for junior and senior mathematics majors, were recorded, tran- scribed, and printed in mimeograph form. Since that time they have been widely distributed as photocopies of ever decreasing legibility, and por- tions have appeared in various textbooks (Husemoller 1], Chahal 1]), but they have never appeared in their entirety. In view of the recent inter- est in the theory of elliptic curves for subjects ranging from cryptogra- phy (Lenstra 1], Koblitz 2]) to physics (Luck-Moussa-Waldschmidt 1]), as well as the tremendous purely mathematical activity in this area, it seems a propitious time to publish an expanded version of those original notes suitable for presentation to an advanced undergraduate audience. We have attempted to maintain much of the informality of the orig- inal Haverford lectures. Our main goal in doing this has been to write a textbook in a technically difficult field which is "readable" by the average undergraduate mathematics major. We hope we have succeeded in this goal. The most obvious drawback to such an approach is that we have not been entirely rigorous in all of our proofs. In particular, much of the foundational material on elliptic curves presented in Chapter I is meant to explain and convince, rather than to rigorously prove., In 1961 the second author deliv1lred a series of lectures at Haverford Col lege on the subject of "Rational Points on Cubic Curves. " These lectures, intended for junior and senior mathematics majors, were recorded, tran scribed, and printed in mimeograph form. Since that time they have been widely distributed as photocopies of ever decreasing legibility, and por tions have appeared in various textbooks (Husemoller [1], Chahal [1]), but they have never appeared in their entirety. In view of the recent inter est in the theory of elliptic curves for subjects ranging from cryptogra phy (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]), as well as the tremendous purely mathematical activity in this area, it seems a propitious time to publish an expanded version of those original notes suitable for presentation to an advanced undergraduate audience. We have attempted to maintain much of the informality of the orig inal Haverford lectures. Our main goal in doing this has been to write a textbook in a technically difficult field which is "readable" by the average undergraduate mathematics major. We hope we have succeeded in this goal. The most obvious drawback to such an approach is that we have not been entirely rigorous in all of our proofs. In particular, much of the foundational material on elliptic curves presented in Chapter I is meant to explain and convince, rather than to rigorously prove., The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. "Rational Points on Elliptic Curves" stresses this interplay as it develops the basic theory, thereby providing an opportunity for advance undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make "Rational Points on Elliptic Curves" an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.
LC Classification Number
QA564-609
Item description from the seller
Seller feedback (517,081)
- 5***t (406)- Feedback left by buyer.Past monthVerified purchaseOutstanding item.
- e***h (253)- Feedback left by buyer.Past monthVerified purchasewhat I wanted
- 9***r (1060)- Feedback left by buyer.Past monthVerified purchaseFast shipping