|Listed in category:
Have one to sell?

Fourier Analysis: An Introduction by Elias M Stein: New

US $121.67
ApproximatelyS$ 156.10
Condition:
Brand New
Breathe easy. Returns accepted.
Shipping:
Free Standard Shipping.
Located in: Sparks, Nevada, United States
Delivery:
Estimated between Thu, 21 Aug and Tue, 26 Aug
Delivery time is estimated using our proprietary method which is based on the buyer's proximity to the item location, the shipping service selected, the seller's shipping history, and other factors. Delivery times may vary, especially during peak periods.
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Coverage:
Read item description or contact seller for details. See all detailsSee all details on coverage
(Not eligible for eBay purchase protection programmes)
Seller assumes all responsibility for this listing.
eBay item number:282811778897
Last updated on Aug 14, 2025 08:19:21 SGTView all revisionsView all revisions

Item specifics

Condition
Brand New: A new, unread, unused book in perfect condition with no missing or damaged pages. See all condition definitionsopens in a new window or tab
Book Title
Fourier Analysis: An Introduction
Publication Date
2003-04-06
Pages
328
ISBN
9780691113845

About this product

Product Identifiers

Publisher
Princeton University Press
ISBN-10
069111384X
ISBN-13
9780691113845
eBay Product ID (ePID)
17038685813

Product Key Features

Number of Pages
328 Pages
Language
English
Publication Name
Fourier Analysis : an Introduction
Subject
Functional Analysis, Mathematical Analysis
Publication Year
2003
Type
Textbook
Subject Area
Mathematics
Author
Rami Shakarchi, Elias M. Stein
Format
Hardcover

Dimensions

Item Height
1.2 in
Item Weight
21 Oz
Item Length
9.5 in
Item Width
6.4 in

Additional Product Features

Intended Audience
College Audience
LCCN
2003-103688
Illustrated
Yes
Table Of Content
Foreword vii Preface xi Chapter 1. The Genesis of Fourier Analysis 1 Chapter 2. Basic Properties of Fourier Series 29 Chapter 3. Convergence of Fourier Series 69 Chapter 4. Some Applications of Fourier Series 100 Chapter 5. The Fourier Transform on R 129 Chapter 6. The Fourier Transform on R d 175 Chapter 7. Finite Fourier Analysis 218 Chapter 8. Dirichlet's Theorem 241 Appendix: Integration 281 Notes and References 299 Bibliography 301 Symbol Glossary 305
Synopsis
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis.Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory., This first volume, a three-part introduction to Fourier analysis, is intended for students with a beginning knowledge of mathematical analysis. The first part concersn notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression., This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory., Intended for students with a beginning knowledge of mathematical analysis, this first volume, in a three-part introduction to Fourier analysis, introduces the core areas of mathematical analysis while also illustrating the organic unity between them. It includes numerous examples and applications.
LC Classification Number
QA403.5

Item description from the seller

About this seller

AlibrisBooks

98.6% positive feedback1.9M items sold

Joined May 2008
Usually responds within 24 hours
Alibris is the premier online marketplace for independent sellers of new & used books, as well as rare & collectible titles. We connect people who love books to thousands of independent sellers around ...
See more

Detailed Seller Ratings

Average for the last 12 months
Accurate description
4.9
Reasonable shipping cost
5.0
Shipping speed
5.0
Communication
5.0

Seller feedback (515,396)

All ratings
Positive
Neutral
Negative