Picture 1 of 6






Gallery
Picture 1 of 6






Have one to sell?
Field and Wave Electromagneti cs (2nd Edition) - David K. Cheng *Acceptable*
US $44.93
ApproximatelyS$ 57.65
or Best Offer
Was US $59.90 (25% off)
Condition:
Acceptable
A book with obvious wear. May have some damage to the cover but integrity still intact. The binding may be slightly damaged but integrity is still intact. Possible writing in margins, possible underlining and highlighting of text, but no missing pages or anything that would compromise the legibility or understanding of the text.
Sale ends in: 1d 13h
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Pickup:
Free local pickup from Alexandria, Virginia, United States.
Shipping:
US $6.97 (approx S$ 8.94) USPS Media MailTM.
Located in: Alexandria, Virginia, United States
Save on combined shipping
Delivery:
Estimated between Wed, 20 Aug and Mon, 25 Aug
Returns:
No returns accepted.
Coverage:
Read item description or contact seller for details. See all detailsSee all details on coverage
(Not eligible for eBay purchase protection programmes)
Seller assumes all responsibility for this listing.
eBay item number:126999809824
Item specifics
- Condition
- ISBN
- 9780201128192
About this product
Product Identifiers
Publisher
Pearson Education
ISBN-10
0201128195
ISBN-13
9780201128192
eBay Product ID (ePID)
84546
Product Key Features
Number of Pages
720 Pages
Publication Name
Field and Wave Electromagnetics
Language
English
Publication Year
1989
Subject
Physics / Electromagnetism, Physics / General, Microwaves
Features
Revised
Type
Textbook
Subject Area
Technology & Engineering, Science
Format
Paperback
Dimensions
Item Height
1.5 in
Item Weight
46.9 Oz
Item Length
9.3 in
Item Width
7.5 in
Additional Product Features
Edition Number
2
Intended Audience
College Audience
LCCN
88-014139
Dewey Edition
22
Illustrated
Yes
Dewey Decimal
530.141
Table Of Content
1. The Electromagnetic Model. Introduction. The Electromagnetic Model. Si Units and Universal Constants. Review Questions. 2. Vector Analysis. Introduction. Vector Addition and Subtraction. Products of Vectors. Orthogonal Coordinate Systems. Integrals Containing Vector Functions. Gradient of a Scalar Field. Divergence of a Vector Field. Divergence Theorem. Curl of a Vector Field. Stoke''s Theorem. Two Null Identities. Helmholtz''s Theorem. Review Questions. Problems. 3. Static Electric Fields. Introduction. Fundamental Postulates of Electrostatics in Free Space. Coulomb''s Law. Gauss''s Law and Applications. Electric Potential. Conductors in Static Electric Field. Dielectrics in Static Electric Field. Electric Flux Density and Dielectric Constant. Boundary Conditions for Electrostatic Fields. Capacitances and Capacitors. Electrostatic Energy and Forces. Solution of Electrostatic Boundary-Value Problems. Review Questions. Problems. 4. Solution of Electrostatic Problems. Introduction. Poisson''s and Laplaces'' Equations. Uniqueness of Electrostatic Functions. Method of Images. Boundary-Value Problems in Cartesian Coordinates. Boundary-Value Problems in Cylindrical Coordinates. Boundary-Value Problems in Spherical Coordinates. Review Questions. Problems. 5. Steady Electric Currents. Introduction. Current Density and Ohm''s Law. Electromotive Force and Kirchoff''s Voltage Law. Equation of Continuity and Kirchoff''s Current Law. Power Dissipation and Joule''s Law. Boundary Conditions for Current Density. Resistance Calculations. Review Questions. Problems. 6. Static Magnetic Fields. Introduction. Fundamental Postulates of Magnetostatics in Free Space. Vector Magnetic Potential. The Biot-Savart Law and Applications. The Magnetic Dipole. Magnetization and Equivalent Current Densities. Magnetic Field Intensity and Relative Permeability. Magnetic Circuits. Behavior of Magnetic Materials. Boundary Conditions for Magnetostatic Fields. Inductances and Inductors. Magnetic Energy. Magnetic Forces and Torques. Review Questions. Problems. 7. Time-Varying Fields and Maxwell''s Equations. Introduction. Faraday''s Law of Electromagnetic Induction. Maxwell''s Equations. Potential Functions. Electromagnetic Boundary Conditions. Wave Equations and their Solutions. Time-Harmonic Fields. Review Questions. Problems. 8. Plane Electromagnetic Waves. Introduction. Plane Waves in Lossless Media. Plane Waves in Lossy Media. Group Velocity. Flow of Electromagentic Power and the Poynting Vector. Normal Incidence of Plane Waves at a Plane Conducting Boundary. Oblique Incidence of Plane Waves at a Plane Conducting Boundary. Normal Incidence of Plane Waves at a Plane Dielectric Boundary. Normal Incidence of Plane Waves at Multiple Dielectric Interfaces. Oblique Incidence of Plane Waves at a Plane Dielectric Boundary. Review Questions. Problems. 9. Theory and Application of Transmission Lines Introduction. Transverse Electromagnetic Wave Along a Parallel-Plate. Transmission Line General Transmission-Line Equations. Wave Characteristics on Finite Transmission Lines. Transients on Transmission Lines. The Smith Chart. Transmission-Line Impedance Matching. Review Questions. Problems. 10. Waveguides and Cavity Resonators. Introduction. General Wave Behaviors Along Uniform Guiding Structures. Parallel-Plate Waveguide. Rectangular Waveguides. Circular Waveguides. Dielectric Waveguides. Cavity Resonators. Review Questions. Problems. 11. Antennas and Radiating Systems. Introduction. Radiation Fields of Elemental Dipoles. Antenna Patterns and Antenna Parameters. Thin Linear Antennas. Antenna Arrays. Receiving Antennas. Transmit-Receive Systems. Some Other Antenna Types. Review Questions. Problems. Appendix A: Symbols and Units. Appendix B: Some Useful Material Constants. Bibliography. Answers to Selected Problems. Index. Back Endpapers.
Edition Description
Revised edition
Synopsis
Back Cover Field and Wave Electromagnetics, Second Edition features many examples of practical applications to give students an excellent physical -- as well as mathematical -- understanding of important concepts. These include applications drawn from important new areas of technology such as optical fibers, radome design, satellite communication, and microstrip lines. There is also added coverage of several new topics, including Hall effect, radar equation and scattering cross section, transients in transmission lines, waveguides and circular cavity resonators, wave propagation in the ionosphere, and helical antennas. New exercises, new problems, and many worked-out examples make this complex material more accessible to students., Respected for its accuracy, its smooth and logical flow of ideas, and its clear presentation, Field and Wave Electromagnetics has become an established textbook in the field of electromagnetics. This book builds the electromagnetic model using an axiomatic approach in steps: first for static electric fields, then for static magnetic fields, and finally for time-varying fields leading to Maxwell's equations. This approach results in an organized and systematic development of the subject matter. Applications of derived relations to fundamental phenomena and electromagnetic technologies are explained.
LC Classification Number
QC760.C48 1989
Item description from the seller
Popular categories from this store
Seller feedback (13,448)
- o***s (555)- Feedback left by buyer.Past monthVerified purchaseI received the item. Thank you!
- r***p (3077)- Feedback left by buyer.Past monthVerified purchaseCareful packaging and fast shipping! Item arrived exactly as described! A+++
- a***- (53)- Feedback left by buyer.Past monthVerified purchaseFast shipping, fantastic condition, awesome price, great seller!