|Listed in category:
Have one to sell?

Linear Dynamic Systems and Signals by Zoran Gajic (2002, Hardcover)

US $49.00
ApproximatelyS$ 62.79
or Best Offer
Condition:
Like New
Shipping:
US $5.97 (approx S$ 7.65) USPS Media MailTM.
Located in: Newark, Delaware, United States
Delivery:
Estimated between Fri, 29 Aug and Sat, 6 Sep to 94104
Estimated delivery dates - opens in a new window or tab include seller's handling time, origin ZIP Code, destination ZIP Code and time of acceptance and will depend on shipping service selected and receipt of cleared paymentcleared payment - opens in a new window or tab. Delivery times may vary, especially during peak periods.
Returns:
No returns accepted.
Coverage:
Read item description or contact seller for details. See all detailsSee all details on coverage
(Not eligible for eBay purchase protection programmes)
Seller assumes all responsibility for this listing.
eBay item number:126079088963

Item specifics

Condition
Like New: A book in excellent condition. Cover is shiny and undamaged, and the dust jacket is ...
ISBN
9780201618549

About this product

Product Identifiers

Publisher
Prentice Hall PTR
ISBN-10
0201618540
ISBN-13
9780201618549
eBay Product ID (ePID)
961475

Product Key Features

Number of Pages
646 Pages
Language
English
Publication Name
Linear Dynamic Systems and Signals
Publication Year
2002
Subject
Differential Equations / General, System Theory
Type
Textbook
Subject Area
Mathematics, Science
Author
Zoran Gajic
Format
Hardcover

Dimensions

Item Height
1.1 in
Item Weight
42.2 Oz
Item Length
9.5 in
Item Width
7.2 in

Additional Product Features

Edition Number
1
Intended Audience
College Audience
LCCN
2002-072593
Dewey Edition
21
Illustrated
Yes
Dewey Decimal
621.3822
Table Of Content
Preface. 1. Introduction to Linear Systems. 1.1 Continuous and Discrete Linear Systems and Signals. 1.2 System Linearity and Time Invariance. 1.3 Mathematical Modeling of Systems. 1.4 System Classification. 1.5 MATLAB System Computer Analysis and Design. 1.6 Book Organization. 1.7 Chapter One Summary. 1.8 References. 1.9 Problems. 2. Introduction to Signals. 2.1 Common Signals in Linear Systems. 2.2 Signal Operations. 2.3 Signal Classification. 2.4 MATLAB Laboratory Experiment on Signals. 2.5 Chapter Two Summary. 2.6 References. 2.7 Problems. I. FREQUENCY DOMAIN TECHNIQUES. 3. Fourier Series and Fourier Transform. 3.1 Fourier Series. 3.2 Fourier Transform and Its Properties. 3.3 Fourier Transform in System Analysis. 3.4 Fourier Series in Systems Analysis. 3.5 From Fourier Transform to Laplace Transform. 3.6 Fourier Analysis MATLAB Laboratory Experiment. 3.7 Chapter Three Summary. 3.8 References. 3.9 Problems. 4. Laplace Transform. 4.1 Laplace Transform and Its Properties. 4.2 Inverse Laplace Transform. 4.3 Laplace Transform in Linear System Analysis. 4.4 Block Diagrams. 4.5 From Laplace to the z-Transform. 4.6 MATLAB Laboratory Experiment. 4.7 Chapter Four Summary. 4.8 References. 4.9 Problems. 5. The z Transform. 5.1 The z Transform and Its Properties. 5.2 Inverse of the z Transform. 5.3 The z Transform in Linear System Analysis. 5.4 Block Diagram. 5.5 Discrete-Time Frequency Spectra. 5.6 MATLAB Laboratory Experiment. 5.7 Chapter Five Summary. 5.8 References. 5.9 Problems. II. TIME DOMAIN TECHNIQUES. 6. Convolution. 6.1 Convolution of Continuous-Time Signals. 6.2 Convolution for Linear Continuous-Time Systems. 6.3 Convolution of Discrete-Time Signals. 6.4 Convolution for Linear Discrete-Time Systems. 6.5 Numerical Convolution Using MATLAB. 6.6 MATLAB Laboratory Experiments on Convolution. 6.7 Chapter Six Summary. 6.8 References. 6.9 Problems. 7. System Response in Time Domain. 7.1 Solving Linear Differential Equations. 7.2 Solving Linear Difference Equations. 7.3 Discrete-Time System Impulse Response. 7.4 Continuous-Time System Impulse Response. 7.5 Complete Continuous-Time System Response. 7.6 Complete Discrete-Time System Response. 7.7 Stability of Continuous-Time Linear Systems. 7.8 Stability of Discrete-Time Linear Systems. 7.9 MATLAB Experiment on Continuous-Time Systems. 7.10 MATLAB Experiment on Discrete-Time Systems. 7.11 Chapter Seven Summary. 7.12 References. 7.13 Problems. 8. State Space Approach. 8.1 State Space Models. 8.2 Time Response from the State Equation. 8.3 Discrete-Time Models. 8.4 System Characteristic Equation and Eigenvalues. 8.5 Cayley-Hamilton Theorem. 8.6 Linearization of Nonlinear System. 8.7 State Space MATLAB Laboratory Experiments. 8.8 Chapter Eight Summary. 8.9 References. 8.10 Problems. III. SYSTEMS IN ELECTRICAL ENGINEERING. <div STYLE="margin-l
Synopsis
The author's twelve years of experience with linear systems and signals are reflected in this comprehensive book. The book contains detailed linear systems theory essentials. The intent of this book is to develop the unified techniques to recognize and solve linear dynamical system problems regardless of their origin. Includes Space state techniques as the time domain approach for studying linear systems. Provides a solid foundation on linear dynamic systems and corresponding systems using the dynamic system point of view. Parallels continuous- and discrete-time linear systems throughout to help users grasp the similarities and differences of each. Three part organization: Part I covers frequency-domain approach to linear dynamic systems, Part II covers the time-domain approach to linear dynamic systems, and Part III discusses the linear system approach to electrical engineering, to allow the user to focus of the subject matter as it pertains to their needs. For anyone interested in linear systems and signals, For sophomore- and junior-level courses in Linear Systems and Signals for electrical engineering, biomedical engineering or mechanical engineering majors. The author's experience teaching undergraduate- and graduate-level linear systems courses for more than 15 years is reflected in this comprehensive text. It contains detailed linear system theory essentials and presents and develops the unified techniques to recognize and solve linear dynamical system problems regardless of their origin. With this text, students will be well equipped to cope with all types of linear dynamic system problems that may be encountered.
LC Classification Number
TK5102.9.G355 2002

Item description from the seller

About this seller

mekatron21

100% positive feedback86 items sold

Joined Apr 2013
Usually responds within 24 hours

Detailed Seller Ratings

Average for the last 12 months
Accurate description
--
Reasonable shipping cost
--
Shipping speed
4.3
Communication
5.0

Seller feedback (24)

All ratings
Positive
Neutral
Negative